Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.384
Filtrar
1.
Sci Data ; 11(1): 381, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615136

RESUMO

Alternative splicing (AS) is a widely observed phenomenon in eukaryotes that plays a critical role in development and stress responses. In plants, the large number of RNA-seq datasets in response to different environmental stressors can provide clues for identification of condition-specific and/or common AS variants for preferred agronomic traits. We report RNA-seq datasets (350.7 Gb) from Capsicum annuum inoculated with one of three bacteria, one virus, or one oomycete and obtained additional existing transcriptome datasets. In this study, we investigated the landscape of AS in response to environmental stressors, signaling molecules, and tissues from 425 total samples comprising 841.49 Gb. In addition, we identified genes that undergo AS under specific and shared stress conditions to obtain potential genes that may be involved in enhancing tolerance to stressors. We uncovered 1,642,007 AS events and identified 4,354 differential alternative splicing genes related to environmental stressors, tissues, and signaling molecules. This information and approach provide useful data for basic-research focused on enhancing tolerance to environmental stressors in hot pepper or establishing breeding programs.


Assuntos
Processamento Alternativo , Capsicum , Estresse Fisiológico , Agricultura , Capsicum/genética , Melhoramento Vegetal , RNA-Seq
2.
Theor Appl Genet ; 137(5): 101, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607449

RESUMO

KEY MESSAGE: The pepper mutants ('221-2-1a' and '1559-1-2h') with very low pungency were genetically characterized. The Pun4 locus, responsible for the reduced pungency of the mutant fruits, was localized to a 208 Mb region on chromosome 6. DEMF06G16460, encoding 3-ketoacyl-CoA synthase, was proposed as a strong candidate gene based on the genetic analyses of bulked segregants, DEG, and expression analyses. Capsaicinoids are unique alkaloids present in pepper (Capsicum spp.), synthesized through the condensation of by-products from the phenylpropanoid and branched-chain fatty acid pathways, and accumulating in the placenta. In this study, we characterized two allelic ethyl methanesulfonate-induced mutant lines with extremely low pungency ('221-2-1a' and '1559-1-2h'). These mutants, derived from the pungent Korean landrace 'Yuwolcho,' exhibited lower capsaicinoid content than Yuwolcho but still contained a small amount of capsaicinoid with functional capsaicinoid biosynthetic genes. Genetic crosses between the mutants and Yuwolcho or pungent lines indicated that a single recessive mutation was responsible for the low-pungency phenotype of mutant 221-2-1a; we named the causal locus Pungency 4 (Pun4). To identify Pun4, we combined genome-wide polymorphism analysis and transcriptome analysis with bulked-segregant analysis. We narrowed down the location of Pun4 to a 208-Mb region on chromosome 6 containing five candidate genes, of which DEMF06G16460, encoding a 3-ketoacyl-CoA synthase associated with branched-chain fatty acid biosynthesis, is the most likely candidate for Pun4. The expression of capsaicinoid biosynthetic genes in placental tissues in Yuwolcho and the mutant was consistent with the branched-chain fatty acid pathway playing a pivotal role in the lower pungency observed in the mutant. We also obtained a list of differentially expressed genes in placental tissues between the mutant and Yuwolcho, from which we selected candidate genes using gene co-expression analysis. In summary, we characterized the capsaicinoid biosynthesis-related locus Pun4 through integrated of genetic, genomic, and transcriptome analyses. These findings will contribute to our understanding of capsaicinoid biosynthesis in pepper.


Assuntos
Capsicum , Gravidez , Feminino , Humanos , Capsicum/genética , Placenta , Alelos , Cânfora , Ácidos Graxos
3.
Plant Cell Rep ; 43(4): 108, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557872

RESUMO

KEY MESSAGE: The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.


Assuntos
Capsicum , Tobamovirus , Capsicum/genética , Capsicum/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Peróxido de Hidrogênio , Oxirredução , Dissulfetos
4.
J Agric Food Chem ; 72(15): 8805-8816, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38566515

RESUMO

Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.


Assuntos
Capsicum , Quitosana , Tamarindus , Antioxidantes/farmacologia , Antioxidantes/análise , Polilisina/farmacologia , Polilisina/química , Capsicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Polissacarídeos/farmacologia , Sementes/química , Quitosana/química
5.
Planta ; 259(5): 114, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587670

RESUMO

MAIN CONCLUSION: Two glycosyltransferase genes belonging to UGT88 family were identified to have 6'-deoxychalcone 4'-glucosyltransferase activity in dahlia. 6'-Deoxychalcones (isoliquiritigenin and butein) are important pigments for yellow and orange to red flower color. 6'-Deoxychalcones are glucosylated at the 4'-position in vivo, but the genes encoding 6'-deoxychalcone 4'-glucosyltransferase have not yet been identified. In our previous study, it was indicated that snapdragon (Antirrhinum majus) chalcone 4'-O-glucosyltransferase (Am4'CGT) has isoliquiritigenin 4'-glucosylation activity. Therefore, to identify genes encoding 6'-deoxychalcone 4'-glucosyltransferase in dahlia (Dahlia variabilis), genes expressed in ray florets that shared high homology with Am4'CGT were explored. As a result, c34671_g1_i1 and c35662_g1_i1 were selected as candidate genes for 6'-deoxychalcone 4'-glucosyltransferases in dahlia. We conducted transient co-overexpression of three genes (c34671_g1_i1 or c35662_g1_i1, dahlia aldo-keto reductase1 (DvAKR1) or soybean (Glycine max) chalcone reductase5 (GmCHR5), and chili pepper (Capsicum annuum) MYB transcription factor (CaMYBA)) in Nicotiana benthamiana by agroinfiltration. Transient overexpression of c34671_g1_i1, DvAKR1, and CaMYBA resulted in increase in the accumulation of isoliquiritigenin 4'-glucosides, isoliquiritigenin 4'-O-glucoside, and isoliquiritigenin 4'-O-[6-O-(malonyl)-glucoside]. However, transient overexpression of c35662_g1_i1, DvAKR1, and CaMYBA did not increase accumulation of isoliquiritigenin 4'-glucosides. Using GmCHR5 instead of DvAKR1 showed similar results suggesting that c34671_g1_i1 has isoliquiritigenin 4'-glucosyltransferase activity. In addition, we conducted co-overexpression of four genes (c34671_g1_i1, c35662_g1_i1 or Am4'CGT, DvAKR1 or GmCHR5, CaMYBA, and chalcone 3-hydroxylase from dahlia). Accumulation of butein 4'-O-glucoside and butein 4'-O-[6-O-(malonyl)-glucoside] was detected for c35662_g1_i1, suggesting that c35662_g1_i1 has butein 4'-glucosyltransferase activity. Recombinant enzyme analysis also supported butein 4'-glucosyltransferases activity of c35662_g1_i1. Therefore, our results suggested that both c34671_g1_i1 and c35662_g1_i1 are 6'-deoxychalcone 4'-glucosyltransferases but with different substrate preference.


Assuntos
Capsicum , Chalcona , Chalconas , Dahlia , Glucosiltransferases/genética , Glucosídeos , Soja
6.
Theor Appl Genet ; 137(5): 97, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589740

RESUMO

KEY MESSAGE: Bulked segregant RNA seq of pools of pepper accessions that are susceptible or resistant to Broad bean wilt virus 2 identifies a gene that might confer resistance to this devastating pathogen. The single-stranded positive-sense RNA virus Broad bean wilt virus 2 (BBWV2) causes substantial damage to pepper (Capsicum annuum) cultivation. Here, we describe mapping the BBWV2 resistance locus bwvr using a F7:8 recombinant inbred line (RIL) population constructed by crossing the BBWV2-resistant pepper accession 'SNU-C' with the susceptible pepper accession 'ECW30R.' All F1 plants infected with the BBWV2 strain PAP1 were susceptible to the virus, and the RIL population showed a 1:1 ratio of resistance to susceptibility, indicating that this trait is controlled by a single recessive gene. To map bwvr, we performed bulked segregant RNA-seq (BSR-seq). We sequenced pools of resistant and susceptible lines from the RILs and aligned the reads to the high-quality 'Dempsey' reference genome to identify variants between the pools. This analysis identified 519,887 variants and selected the region from 245.9-250.8 Mb of the Dempsey reference genome as the quantitative trait locus region for bwvr. To finely map bwvr, we used newly designed high-resolution melting (HRM) and Kompetitive allele specific PCR (KASP) markers based on variants obtained from the BSR-seq reads and the PepperSNP16K array. Comparative analysis identified 11 SNU-C-specific SNPs within the bwvr locus. Using markers derived from these variants, we mapped the candidate bwvr locus to the region from 246.833-246.949 kb. SNU-C-specific variants clustered near DEM.v1.00035533 within the bwvr locus. DEM.v1.00035533 encodes the nitrate transporter NPF1.2 and contains a SNP within its 5' untranslated region. The bwvr locus, which contains four genes including DEM.v1.00035533, could represent a valuable resource for global pepper breeding programs.


Assuntos
Capsicum , Fabavirus , Mapeamento Cromossômico , RNA-Seq , Capsicum/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Resistência à Doença/genética , Doenças das Plantas/genética
7.
Plant Cell Rep ; 43(4): 106, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532109

RESUMO

KEY MESSAGE: Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression. Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants' growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24-57%) and malondialdehyde (MDA) (79-89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.


Assuntos
Antioxidantes , Capsicum , Compostos Heterocíclicos com 3 Anéis , Lactonas , Antioxidantes/metabolismo , Capsicum/metabolismo , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Clorofila/metabolismo , Plântula/metabolismo , Secas
8.
Int J Biol Macromol ; 265(Pt 2): 130904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553392

RESUMO

This study aims to enhance the functionality of conventional protein-based nanocellulose composite films (PNCF) to meet the high demand for natural antimicrobial packaging films. Capsicum leaf protein (CLP) and cellulose nanocrystals (CNCs) extracted from capsicum leaves were used as raw materials. Capsaicin, an essential antibacterial active ingredient in the capsicum plant, was used as an additive. The influence of different capsaicin loads on PNCF physicochemical and material properties was investigated under alkaline conditions. The results show that all film-forming liquids (FFLs) are non-Newtonian fluids with shear thinning behavior. When the capsaicin loading exceeds 20 %, the surface microstructure of PNCF changes from dense lamellar to rod-like. Capsaicin did not alter the PNCF crystal structure, thermal stability or chemical bonding. Capsaicin can be loaded onto the PNCF surface by intermolecular hydrogen bonding reactions with CLP and CNC, preserving capsaicin's biological activity. With increasing capsaicin loads from 0 % to 50 %, the mechanical and hydrophobic properties of PNCF decreased, whereas the diameter of the inhibition zone increased. All PNCFs have UV-blocking properties with potential applications in developing biodegradable food packaging materials. The results of this study provide a theoretical basis for the high-value utilization of capsicum cultivation waste and the preparation of novel PNCF.


Assuntos
Capsicum , Nanopartículas , Capsicum/química , Capsaicina/farmacologia , Resistência à Tração , Celulose/química , Nanopartículas/química , Cânfora , Mentol , Verduras , Folhas de Planta/metabolismo
9.
Genes (Basel) ; 15(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540374

RESUMO

The formation of fruit color in pepper is closely related to the processes of carotenoid metabolism. In this study, red wild-type pepper XHB, SP01, PC01 and their corresponding mutants H0809 (orange), SP02 (yellow), and PC02 (orange) were used as research materials. The Ggps, Psy, Lcyb, Crtz, Zep, and Ccs genes involved in carotenoid biosynthesis were cloned, and bioinformatics and expression analyses were carried out. The results showed that the full lengths of the six genes were 1110 bp, 2844 bp, 1497 bp, 2025 bp, 510 bp, and 1497 bp, and they encoded 369, 419, 498, 315, 169, and 498 amino acids, respectively. Except for the full-length Ccs gene, which could not be amplified in the yellow mutant SP02 and the orange mutant PC02, the complete full-length sequences of the other genes could be amplified in different materials, indicating that the formation of fruit color in the SP02 and PC02 mutants could be closely related to the deletion or mutation of the Ccs gene. The analytical results of real-time quantitative reverse transcription PCR (qRT-PCR) showed that the Ggps, Psy, Lcyb, Crtz, and Zep genes were expressed at different developmental stages of three pairs of mature-fruit-colored materials, but their patterns of expression were not consistent. The orange mutant H0809 could be amplified to the full Ccs gene sequence, but its expression was maintained at a lower level. It showed a significant difference in expression compared with the wild-type XHB, indicating that the formation of orange mutant H0809 fruit color could be closely related to the different regulatory pattern of Ccs expression. The results provide a theoretical basis for in-depth understanding of the molecular regulatory mechanism of the formation of color in pepper fruit.


Assuntos
Capsicum , Frutas , Frutas/metabolismo , Capsicum/genética , Carotenoides/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Clonagem Molecular
10.
Bioresour Technol ; 399: 130571, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518875

RESUMO

The extraction of oil from oilseeds in intact oleosomes is one of the suggested processes that could replace the extraction of oil by pressing and solvent extraction, being milder, environmentally less impactful and potentially more efficient in its use of resources. This study assesses the latter using an exergy assessment of oleosome extraction for food emulsions. The contribution of each part of the process to the overall impact was investigated. Based on current lab-scale data, oleosome extraction has nearly twice the exergy loss compared to the industrial process of oil extraction and industrial assembly of emulsions. The exergy losses of the lab-scale oleosome extraction are currently dominated by the chemical exergy associated with product loss during the separation of oleosomes from the rest of the biomass. This loss is expected to significantly decrease when upscaled to industrial scale. When substituted with industrial material efficiencies, the total exergy loss decreased to nearly a quarter of the original loss, representing oleosome extraction as a potentially more effective and environment-friendly option.


Assuntos
Capsicum , Gotículas Lipídicas , Emulsões , Cânfora , Mentol , Verduras , Sementes
11.
BMC Plant Biol ; 24(1): 201, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500065

RESUMO

BACKGROUND: The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied. RESULTS: In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum). CONCLUSIONS: Our study provides evolutionary and functional insights into the REM gene family in pepper.


Assuntos
Arabidopsis , Capsicum , Filogenia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes de Plantas/genética , Família Multigênica , Capsicum/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
12.
BMC Plant Biol ; 24(1): 209, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519997

RESUMO

Salinity stress can significantly delay plant growth. It can disrupt water and nutrient uptake, reducing crop yields and poor plant health. The use of strigolactone can be an effective technique to overcome this issue. Strigolactone enhances plant growth by promoting root development and improvement in physiological attributes. The current pot study used strigolactone to amend chili under no salinity and salinity stress environments. There were four treatments, i.e., 0, 10µM strigolactone, 20µM strigolactone and 30µM strigolactone. All treatments were applied in four replications following a completely randomized design (CRD). Results showed that 20µM strigolactone caused a significant increase in chili plant height (21.07%), dry weight (33.60%), fruit length (19.24%), fruit girth (35.37%), and fruit yield (60.74%) compared to control under salinity stress. Significant enhancement in chili chlorophyll a (18.65%), chlorophyll b (43.52%), and total chlorophyll (25.09%) under salinity stress validated the effectiveness of 20µM strigolactone application as treatment over control. Furthermore, improvement in nitrogen, phosphorus, and potassium concentration in leaves confirmed the efficient functioning of 20µM strigolactone compared to other concentrations under salinity stress. The study concluded that 20µM strigolactone is recommended for mitigating salinity stress in chili plants. Growers are advised to apply 20µM strigolactone to enhance their chili production under salinity stress.


Assuntos
Capsicum , Compostos Heterocíclicos com 3 Anéis , Cânfora , Clorofila A , Lactonas , Mentol , Salinidade , Estresse Salino
13.
BMC Plant Biol ; 24(1): 210, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519909

RESUMO

BACKGROUND: Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT: Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS: In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.


Assuntos
Capsicum , Transcriptoma , Antocianinas/metabolismo , Capsicum/genética , Capsicum/metabolismo , 60440 , Metaboloma , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Isoformas de Proteínas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Plant Sci ; 343: 112060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460554

RESUMO

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Assuntos
Capsicum , Micoses , Zinco , Capsicum/microbiologia , Botrytis/fisiologia , Acetofenonas , Doenças das Plantas/microbiologia
15.
Plant Cell Rep ; 43(4): 92, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466441

RESUMO

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.


Assuntos
Capsicum , Óxido Nítrico , Óxido Nítrico/metabolismo , Frutas/metabolismo , Capsicum/genética , Capsicum/metabolismo , Leucina/metabolismo , Leucil Aminopeptidase/genética , Leucil Aminopeptidase/metabolismo , Ácido Peroxinitroso/metabolismo , Cianetos/metabolismo , Dipeptídeos/metabolismo
16.
Sci Rep ; 14(1): 7223, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538759

RESUMO

To study the effect of different high-voltage electric field polarisation treatment process parameters on the viability of seeds of dried chili peppers. In this study, a high-voltage electrostatic polarisation treatment system was constructed to carry out experiments on the effects of different high-voltage electric field polarisation treatment process parameters on the viability of dried chili seeds. Conduct one-way tests to determine the preferred polarisation method and the preferred interval for output voltage and polarisation time. Two-factor, five-level central combination test with output voltage and polarization time as test factors and seed conductivity as a response indicator. Determining the better combination of parameters for output voltage and polarization time; Conducting seed germination trials to validate the effectiveness of the polarisation process. The results of the one-way test showed that: Negative-voltage polarisation was more effective than positive-voltage polarisation and alternating positive-negative-voltage polarisation in promoting seed vigor, with a better output voltage in the range of 10-14 kV, and a better polarisation time in the range of 20-40 s; The results of orthogonal tests showed that: Under the condition of negative voltage polarisation treatment, the output voltage of 12.08 kV and polarisation time of 30.32 s was the better parameter combination, at which the seed conductivity was minimum 159.87 uS/(cm g). Analyzing the function of cell membrane selective semi-permeability by seed conductivity change and revealing the mechanism of seed viability enhancement by high voltage electric field polarisation treatment; In the seed germination test, compared with the control group, seed germination potential increased by 9.09%, germination rate increased by 20.45%, germination index increased by 3.49, and vigor index increased by 41.66 under high-voltage electrostatic polarisation treatment, and all vigor indexes were significantly improved. The results of this study can provide a basis for the selection of processes and parameters for subsequent high-voltage electric field polarisation treatment of crop seeds.


Assuntos
Capsicum , Germinação , Sementes/metabolismo , Condutividade Elétrica , Permeabilidade da Membrana Celular
17.
Curr Pharm Des ; 30(2): 151-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532324

RESUMO

BACKGROUND: The use of naturally occurring bioactive materials is getting great attention owing to their safety and environmental properties. Oily compounds, known as oleoresins, are expected to provide an important source for the natural products industry aiming to develop novel treatments for skin conditions. In this work, Capsicum annuum oleoresin nanoemulgel formulations have been prepared and investigated for their antibacterial and anticancer properties. METHODOLOGY: Several C. annuum oleoresin nanoemulgel formulations were prepared by incorporating a Carbopol 940 gel in a self-nanoemulsifying nanoemulsion consisting of C. annuum, tween 80, and span 80. The systems were characterized for particle size, polydispersity index (PDI), zeta potential, and rheology. The in vitro antimicrobial and cytotoxic activities of the optimum formulation were evaluated. RESULTS: The selected formulation is composed of 40% tween, 10% span 80, and 40% C. annuum oleoresin. This formulation produced a stable nanoemulsion with a narrow PDI value of 0.179 ± 0.08 and a droplet size of 104.0 ± 2.6 nm. Results of the in vitro antimicrobial studies indicated high potency of the systems against methicillin-resistant Staphylococcus aureus (MRSA) (zone of inhibition of 29 ± 1.9 mm), E. coli (33 ± 0.9 mm), K. pneumonia (30 ± 1.4 mm), and C. albicans (21 ± 1.5 mm), as compared to the reference antibiotic, ampicillin (18 ± 1.4 mm against K. pneumonia), and antifungal agent, fluconazole (12 ± 0.1 mm against C. albicans). Furthermore, cytotoxicity results, expressed as IC50 values, revealed that the oleoresin and its nanoemulgel had the best effects against the HepG2 cell line (IC50 value of 79.43 µg/mL for the nanoemulgel) and MCF7 (IC50 value of 57.54 µg/mL), and the most potent effect was found against 3T3 (IC50 value of 45.7 µg/m- L). On the other side, the system did not substantially exhibit activity against By-61 and Hela. CONCLUSION: C. annuum oleoresin and its nanoemulgel can be considered valuable sources for the discovery of new antibacterial, antifungal, and anticancer compounds in the pharmaceutical industry, especially due to their potent activity against various cancer cell lines as well as bacterial and fungal strains.


Assuntos
Anti-Infecciosos , Capsicum , Staphylococcus aureus Resistente à Meticilina , Extratos Vegetais , Pneumonia , Humanos , Escherichia coli , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans
18.
Food Chem ; 447: 138962, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518614

RESUMO

A bacteriocin paracin wx3 was investigated as a candidate of natural preservative to control green pepper soft rot. Firstly, paracin wx3 was heterologously expressed in Pichia pastoris X33 with an improved yield of 0.537 g/L. Its size and amino acid sequence were confirmed by Tricine-SDS-PAGE and LC-MS/MS. Then, result of antibacterial activity showed that its MIC value against Pectobacterium carotovorum was 16 µg/mL. In vitro, paracin wx3 completely killed the pathogen at high concentrations ≥8 × MIC. In vivo, disease incidence of green pepper soft rot was decreased from 90% (control) to <2% (8 × MIC). Subsequently, results of action mode showed that paracin wx3 inhibited the growth of pathogen by pore-formation on cell membrane. Last, paracin wx3 treatment reduced losses of weight, firmness, total soluble solid, Vc of green pepper during storage. It also inhibited the production of soft rot volatile p-xylene, 1-butanol, 2-methyl-2-propanol, 3-hydroxybutan-2-one-D, 2-pentyl furan, butanal, etc.


Assuntos
Bacteriocinas , Capsicum , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Capsicum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Doenças das Plantas/microbiologia
19.
Toxicon ; 240: 107640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325757

RESUMO

The effects of dietary supplementation with Capsicum annuum fruit pericarp powder (CPP) and Capsicum annuum fruit seed powder (CSP) on the health and performance of broiler chickens exposed to aflatoxin B1 (AFB1) was investigated. Four dietary groups were established: CON (control), AFT (0.5 mg/kg AFB1), CPAF (0.5 g/kg CPP and 0.5 mg/kg AFB1), and CSAF (0.5 g/kg CSP and 0.5 mg/kg AFB1). The AFT group shows a significant (P < 0.05) reduction in the relative growth rate compared to CON, CPAF, and CSAF. In contrast, the latter two groups exhibit growth rates similar (P > 0.05) to CON. Additionally, immunoglobulin levels (IgG, IgM, and IgA) in the AFT group are significantly (P < 0.05) lower compared to the other treatment groups. Serum interleukin-6 levels in the CPAF and CSAF groups were similar (P > 0.05) to CON but higher (P < 0.05) than in AFT. Tumor necrosis factor-alpha levels were elevated (P < 0.05) in AFT compared to the other treatment groups. Interferon-gamma concentrations in AFT were significantly (P < 0.05) lower than in the other treatment groups. The liver histology reveals that the AFT treatment group has periportal hepatic inflammation. In contrast, the CPAF and CSAF treatment groups exhibit normal hepatic microanatomy. In conclusion, 0.5 g/kg CPAF dietary supplementation may help to ameliorate the adverse effects of AFB1 exposure on broiler chicken health, specifically the growth, immune parameters and liver histology.


Assuntos
Capsicum , Fator de Ativação de Plaquetas/análogos & derivados , Animais , Galinhas , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , Pós/farmacologia , Citocinas , Adipocinas/farmacologia , Fígado , Suplementos Nutricionais , Imunoglobulinas , Carne , Ração Animal/análise
20.
Sci Rep ; 14(1): 3019, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321176

RESUMO

Mixing animal waste and agricultural waste in certain proportions forms agricultural compost through appropriate air, time, and water supply. One of their use areas is directly used as fertilizer, and the other one is used as a material that can partially or completely replace P (peat) in the PGM (plant growth media). In this study, the initial mixtures with an appropriate C/N ratio and moisture content, which were created by mixing cow manure, chicken manure, hazelnut husk, hazelnut pruning wastes, vegetable and fruit wastes, and dry leaves, were composted for 180 days. The physicochemical properties of the mature composts were determined. Their effects on the fruit yield (weight of fruits) and plant height of pepper seedlings were evaluated in pot and field experiments. N (nitrogen), P (phosphorus), Cu (copper), and Zn (zinc) content were the highest in C4 (2.59%, 1.12%, 83.11 mg/kg, and 605.3 mg/kg). K (potassium) and Mn (manganese) content in C3 (1.79% and 750.5 mg/kg) and Fe (iron) content in C1 (4025 mg/kg) were determined to be the highest. There was no phytotoxic effect of all composts on Lepidium sativum seeds. Except for pH and organic matter, C1 45%, C1 20%, C4 45%, C4 20%, and P 90% met the requirements for ideal media. The mean height of eight-week seedlings increased in media of C1 20%, C1 45%, C2 20%, C2 45%, and C4 20%, but decreased in media of C3 90%. In field studies, while the highest yield was determined in C3 as 1530 g/plant, the lowest yield was 765.5 g/plant in control. The highest mean height was observed in C3 at 76.33 cm; the lowest was 63.03 cm in control.


Assuntos
Capsicum , Compostagem , Corylus , Animais , Plântula , Esterco , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...